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1 Surface Physics Division, Faculty of Physics, Adam Mickiewicz University,
ulica Umultowska 85, Poznań, 61-614 Poland
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Abstract
Spin-wave excitations in ferromagnetic layered composite (AB · · · BA; A
and B being different homogeneous ferromagnetic materials) are analysed
theoretically, by means of the transfer matrix approach. The properties of
multilayer spin-wave mode profiles are discussed in relation to multilayer
characteristics, such as the filling fraction and the exchange or magnetization
contrast; also, surface spin pinning conditions and dipolar interactions are taken
into account. The interface conditions are satisfied by introducing an effective
exchange field expressed by interface gradients of the exchange constant and
the magnetization. This approach provides an easy way to find frequencies
and amplitudes of standing spin waves in the multilayer. The developed theory
is applied to interpretation of spin wave resonance (SWR) spectra obtained
experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer
Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of the
applied magnetic field. By fitting the SWR spectra obtained experimentally and
those found numerically, the surface anisotropies are estimated on multilayer
surfaces; then, the observed resonance lines are identified as associated with
bulk, surface or interface modes. The theory can be extended to a general case
of any multi-component layered system.

1. Introduction

The interest in periodic composite materials, such as photonic [1–4], phononic [5–9] or
magnonic [10–13] crystals, has been growing systematically over the last few years. Besides
two- and three-dimensional periodic composites, multilayer systems (providing an example of
the simplest one-dimensional composite) are studied intensively. In particular, many surveys
deal with magnetic multilayers [14–23]. The reason for this special theoretical interest is that in
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magnetic layered composites the local magnetic anisotropy, short-range exchange interactions
and long-range dipolar forces are competing to determine static and dynamic properties of such
materials. As a result, the magnetic arrangement in composite materials is generally complex.
In a particular case with a saturating field applied, this arrangement becomes trivial, all spins
being parallel, but the dynamic properties remain not obvious. This is the case considered here;
we focus on dynamic properties, such as the resonance frequencies and the magnon profiles,
which determine the resonance intensities. A complete discrete treatment of a layered system
is developed in this paper, in order to obtain in a clear way the magnon profiles within a layered
composite.

The example layered systems to be theoretically studied here are provided by
Ni/Fe multilayers, whose experimental investigation, using Brillouin scattering [24–26] or
ferromagnetic resonance [27–30], is extensively reported in the literature. The spin wave
resonance (SWR) spectra resulting from our computations agree with the ferromagnetic
resonance measurements performed by Chambers et al [31]. Though here limited to systems
containing only iron and nickel layers, our method can be applied to any ferromagnetic layered
systems.

2. The discretized Landau–Lifshitz equation approach

The applied saturating field makes the direction of the static magnetization, �M S
l , parallel

everywhere (because of the weakness of the magnetic excitation) in the multilayer ABA · · · A
and is perpendicular to the dynamic component �ml of the magnetization, which depends on
the plane number l, with the following obvious relation for the total magnetization:

�Ml = �M S
l + �ml . (1)

The Landau–Lifshitz (LL) equation reads

∂ �Ml

∂ t
= γµ0 �Ml × �Hef f,l. (2)

Taking a resonant solution with �ml ≈ exp(−iωt), one obtains

−iω �ml = γµ0( �M S
l + �ml) × �Hef f,l (3)

with the local effective field, �Hef f,l , having the following form [10–12]:

�Hef f,l = �H0 + �hl +
2

µ0

(
�∇ ·

Al

M S
l

2
�∇
)

�ml, (4)

where �H0 is the applied magnetic field, �hl is the dipolar field, M S
l is the saturated magnetization

and Al is the local exchange constant. In SWR there is no wave propagation in the layer (since
�k‖ ≡ 0) and the problem becomes one dimensional; both the dynamic component �ml of the
magnetization and the dipolar field �hl depend only on the plane number l.

In the one-dimensional discrete approach to the layered composite material the local
effective field given by equation (4) can be expressed as follows:

�Hef f,l = �H0 + �hl +
2

µ0a2

[
Al+1

M S
l+1

2 �ml+1 −
(

Al+1

M S
l+1

2 +
Al

M S
l

2

)
�ml +

Al

M S
l

2 �ml−1

]
, (5)

where a is the lattice parameter in the composite material. It is useful to introduce the effective
local parameter

Jl = 2Al

µ0a2 M S
l

2 (6)
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to obtain a more compact expression of the effective field:

�Hef f,l = �H0 + �hl + [Jl+1 �ml+1 − (Jl+1 + Jl) �ml + Jl �ml−1]. (7)

From this formula we obtain the following four expressions for effective fields, respectively,
in component A, in component B, and at the interfaces AB and BA:

�H A
ef f,l = �H0 + �hl + [JA �ml+1 − (2JA) �ml + JA �ml−1], (8)

�H B
ef f,l = �H0 + �hl + [JB �ml+1 − (2JB) �ml + JB �ml−1], (9)

�H AB
ef f,l = �H0 + �hl + [JB �ml+1 − (JB + JA) �ml + JA �ml−1], (10)

�H B A
ef f,l = �H0 + �hl + [JA �ml+1 − (JA + JB) �ml + JB �ml−1]. (11)

3. Calculation of thin film dipolar fields

In this section we concentrate on the calculation of the dipolar field �hl . For this purpose we
consider a set of magnetic moments µ�r placed regularly in sites �r of a thin-film crystal lattice
of simple cubic structure. Let the crystal surface be the (y, z)-plane of a Cartesian reference
system, with the x-axis perpendicular to this plane. The thin film is assumed to be infinite
in plane (y, z), but the number of lattice planes perpendicular to the surface is finite. The
reference point (0, 0, 0) will be placed in one of the lattice sites; from the analysis presented
below it will become clear that the position of this site can be chosen arbitrarily.

Magnetic field �h0 ≡ �h(0,0,0) produced by all the dipoles in the reference point is described
by a classical formula (obtained using the linear approximation [35]), having the following
form in SI units:

�h0 = 1

4π

∑
�r �=0

3�r(�µ�r · �r) − �µ�r r2

r5
; (12)

the above sum involves all the sites except the reference point (�r ≡ 0). If the lattice planes
parallel to the surface are numbered with index n, the position of the sites in which the magnetic
moments are located is defined by a set of three integers (n, p, q) satisfying the following
relations:

�r = ac[n, p, q], r = ac

√
n2 + p2 + q2; (13)

ac is the lattice constant, and �r‖ = ac[p, q] is the site vector within a plane. Through inserting
the above equations into (12) we obtain

�h0 = 1

4π

∑
[n,p,q]

′
[

3ac(n�i + p �j + q �k)(�µ�r · ac(n�i + p �j + q �k) − �µ�r a2
c (n

2 + p2 + q2)

(ac

√
n2 + p2 + q2)5

]

= 1

4π

∑
[n,p,q]

′
[

3
�i(µx

�r n2 + µ
y
�r np + µz

�r nq) + �j(µx
�r np + µ

y
�r p2 + µz

�r pq)

a3
c (n

2 + p2 + q2)
5
2

+
3�k(µx

�r nq + µ
y
�r pq + µz

�r q2) − (µx
�r �i + µ

y
�r �j + µz

�r �k)(n2 + p2 + q2)

a3
c (n

2 + p2 + q2)
5
2

]
, (14)

where the sum over �r is replaced by the triple sum over indices [n, p, q]
(∑

�r ≡ ∑
[n,p,q]

)
; the

prime (′) at the sum symbol means that the reference point is excluded from the sum. As the
site distribution within each plane is symmetric with respect to site (n, 0, 0), each site (p, q)

has its negative counterpart (−p,−q). Consequently, in sum (14) all the terms in which p and
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q appear in odd powers are compensated, and (14) can be re-written as follows:

�h0 = 1

4π

∑
[n,p,q]

′
[

3
�iµx

�r n2 + �jµy
�r p2 + �kµz

�r q2

a3
c (n

2 + p2 + q2)
5
2

−
�iµx

�r (n
2 + p2 + q2) + �jµy

�r (n
2 + p2 + q2) + �kµz

�r (n
2 + p2 + q2)

a3
c (n

2 + p2 + q2)
5
2

]

= 1

4π

∑
[p,q,n]

′

×
[�iµx

�r (2n2 − p2 − q2) + �jµy
�r (−n2 + 2 p2 − q2) + �kµz

�r (−n2 − p2 + 2q2)

a3
c (n

2 + p2 + q2)
5
2

]
.

(15)

Further simplification will be obtained using double sums over p and q for a given plane n
(within the square of a size 2Lac × 2Lac):

In(L) ≡
∑
p,q

n2

(n2 + p2 + q2)5/2
for n �= 0, (16)

Jn(L) ≡
∑
p,q

p2

(n2 + p2 + q2)5/2
≡

∑
p,q

q2

(n2 + p2 + q2)5/2

≡ 1

2

∑
p,q

p2 + q2

(n2 + p2 + q2)5/2
for n �= 0, (17)

Kn(L) ≡ In(L) − Jn(L) for n �= 0; (18)

K0(L) ≡
∑
p,q

′ p2

(p2 + q2)5/2
≡ 1

2

∑
p,q

′ p2 + q2

(p2 + q2)5/2

≡ 1

2

∑
p,q

′ 1

(p2 + q2)3/2
for n = 0. (19)

The equality of the two sums in (17) is a consequence of the fact that 0x is a fourfold symmetry
axis for each lattice plane.

We shall now assume that all the magnetic moments within a single plane n are identical,
i.e.

�µn ≡ �µ[n,p,q], for any p and q. (20)

Using (16)–(20) we can transform (15) to the following form:

�h0 = 1

4π

∑
n �=0

Kn
2�iµx

n − �jµy
n − �kµz

n

a3
c

+ K0
1

4π

−2�iµx
0 + �jµy

0 + �kµz
0

a3
c

. (21)

Note that by assuming �µn ≡ �µ�r magnetostatic excitations propagating in the plane (y, z) were
excluded from our analysis.

Formula (21) can be applied to both finite and infinite (in the plane (y, z)) systems.
However, our further investigation will focus on the latter case only, and an infinitely large
film will be considered with integers p and q running through the infinite set of values,
p, q ∈ (−∞,∞). By this assumption, the sums over p and q in (16) and (17) can be replaced
by integrals over polar coordinates (r, θ) within the film plane, according to the following
approximate recipe:

In[∞] ≈
∫ ∞

0

∫ 2π

0

r dr dθ

(n2 + r2)5/2
, Jn[∞] ≈

∫ ∞

0

∫ 2π

0

r3 cos2 θ dr dθ

(n2 + r2)5/2
. (22)
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Figure 1. Sums In and Jn as well as their difference, In − Jn , calculated numerically according
to definitions (16) and (17) and represented as functions of the structure ‘planar’ size, determined
by L (−L � p, q � L). The sample size along both 0x and 0y axes is 2Lac , ac being the lattice
constant. It is anticipated that for any lattice plane number, n, both sums approach the same limit
value when L → ∞.

Both these integrals are immediately found to have the same value, 2π/3n, for any plane
number n. Therefore it is legitimate to postulate the following equality:

In[∞] = Jn[∞] = 2π

3n
(n �= 0). (23)

To verify this conjecture, we calculated numerically sums In and Jn according to their
definitions (16) and (17), for a finite thin film of size 2Lac × 2Lac. The resulting values
approach the same limit when L → ∞, exactly as anticipated in our postulate (23) (see
figure 1).

This result is very significant since substitution of (23) in (21) results in complete vanishing
of the first term representing the contribution to the field �h0 coming from all neighbouring
planes. The dipole field calculated within this approximation shall be henceforth denoted by
�h0[∞]. In its expression according to (21), the value of K0 (19) corresponds to an infinite



2454 M Krawczyk et al

plane n = 0:

�h0[∞] = K0[∞]
1

4π

−2�iµx
n + �jµy

n + �kµz
n

a3
c

, (24)

where

K0[∞] ≈
∫ ∞

1/2

∫ 2π

0

cos2 θ dr dθ

r2
= 2π. (25)

In the above formula sum K0 is regarded as approximately equivalent to the respective definite
integral; a certain problem appeared at this stage,as the lower limit of integration over the radial
variable r was supposed to be chosen so that the reference point, (0, 0, 0), was excluded from
the integration (as it had been from the corresponding summation). We solved this problem by
assuming such a lower limit of integration that the static demagnetization coefficient calculated
with the help of (25) corresponded exactly to the classical text-book result of magnetic thin
film theory [36].

Since the considered ‘zero’ plane was chosen arbitrarily, (24) can be regarded as a general
formula describing the dipole field in any site of an infinitely extended plane l:

�hl ≡ �h0[∞] = 1

2

−2�iµx
l + �jµy

l + �kµz
l

a3
c

. (26)

It is convenient to introduce in this formula the notion of magnetization, a phenomenological
quantity, which in the considered case of a simple cubic lattice can be defined as follows:

�Ml = �µl/a3
c . (27)

Then, (26) can be written in the tensor notation:

�hl = 1
2 (−2M x

l
�i + M y

l
�j + Mz

l
�k) = 1

2

( −2 0 0
0 1 0
0 0 1

)


M x
l
�i

M y
l

�j
Mz

l
�k


 . (28)

Let us now consider two particular cases.

Case 1. The applied static field is perpendicular to the film surface

When a static magnetic field is applied perpendicularly to the film surface, the allowed
magnetostatic excitations propagate only in the direction of the field. In the coordinate system
assumed above (with axis 0x oriented along the surface normal and axes 0y and 0z lying in
the surface plane), component M x

l corresponds to the static magnetization, M S
l . Thus, (28)

takes the following form:

�hl = 1
2

(−2 0 0
0 1 0
0 0 1

)
 M S

l
�i

m y
l
�j

mz
l
�k


 , (29)

where m y
l and mz

l are dynamical components of the transversal magnetization �m‖ = m y
l
�j +mz

l
�k.

Case 2: The applied static field lies in the film plane

In this configuration, referred to as parallel, the magnetostatic excitations propagate in the
direction perpendicular to the applied field. Assuming that axis 0x is still perpendicular to the
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film plane and axis 0z follows the direction of the spontaneous magnetization (Mz
l ≡ M S

l ), (28)
becomes

�hl = 1

2

( −2 0 0
0 1 0
0 0 1

) 
 mx

l
�i

m y
l
�j

M S
l
�k


 . (30)

The above formulae clearly indicate that the magnetic moment precession is circular in the
first case, and elliptic in the second one, which is in perfect conformity with the classical result
obtained through a macroscopic approach [36].

Below we will focus on the perpendicular configuration only, therefore �hl will be
expressed by the formula (29).

4. The transfer matrix approach

Using the expression (7) in LL equation (3), and expressing �hl by magnetizations according
to (29), leads to the following equation:

−iω �ml = γµ0( �M S
l + �ml)

( �H0 − �M S
l + 1

2 �ml + [Jl+1 �ml+1 − (Jl+1 + Jl) �ml + Jl �ml−1]
)
. (31)

In the linear approximation (assuming m � M S , h � H0), the terms including �m squared are
neglected, leading to the following vector equation:

−iω �ml = γµ0 �M S
l × [

Jl+1 �ml+1 − (Jl+1 + Jl) �ml + 1
2 �ml + Jl �ml−1

]
+ γµ0 �ml × [ �H0 − �M S

l

]
(32)

or its equivalent two scalar equations:

ωml,y = iγµ0 M S
l

[−Jl+1ml+1,z + (Jl+1 + Jl)ml,z − 1
2 ml,z − Jl ml−1,z

]
+ iγµ0ml,z(H0 − M S

l ), (33)

−iωml,z = γµ0 M S
l

[
Jl+1ml+1,y − (Jl+1 + Jl)ml,y + 1

2 ml,y + Jlml−1,y
]

− γµ0ml,y(H0 − M S
l ). (34)

Now, complex quantities m±
l are introduced, according to the standard method:

m+
l = ml,y + iml,z ,

m−
l = ml,y − iml,z .

Adding and subtracting equations (33) and (34) results in two independent equations for m+

and m−, corresponding to spin waves polarized circularly in opposite directions. In further
reasoning, we will use the equation with m+ only:

Cl Jl+1m+
l+1 +

[
� − Cl(Jl+1 + Jl) + 3

2 Cl − 1
]
m+

l + Cl Jl m
+
l−1 = 0, (35)

introducing reduced frequency �,

� = ω

γµ0 H0
, (36)

and magnetic stiffness constant,

Cl = MS,l

H0
. (37)

Equation (35) can be read in a regressive way, in order to define a transfer matrix:

m+
l−1 = [1 + Cl(Jl + Jl+1 − 3

2 ) − �]

Cl Jl
m+

l − Jl+1

Jl
m+

l+1 (38)
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and (
m+

l−1

m+
l

)
=

( [1+Cl (Jl +Jl+1− 3
2 )−�]

Cl Jl
− Jl+1

Jl

1 0

)
·
(

m+
l

m+
l+1

)
. (39)

For a composite sample made of two materials A and B, with different exchange constant and
magnetic stiffness values, four transfer matrices must be defined: t̂A, t̂B , t̂AB and t̂B A, according
to four effective fields (8)–(11). They are

t̂A =
(

2 +
1−�− 3

2 CA

CA JA
−1

1 0

)
, t̂B =

(
2 +

1−�− 3
2 CB

CB JB
−1

1 0

)
,

t̂AB =
(

1 +
1−�+CB (JA− 3

2 )

CB JB
− JA

JB

1 0

)
, t̂B A =

(
1 +

1−�+CA (JB− 3
2 )

CA JA
− JB

JA

1 0

)
.

(40)

For composite structure ABABABA, where each block A is made up of L A planes and each
block B is made up of L B planes (see figure 2), the global transfer matrix T̂ is defined as
follows:

T̂ = t̂ L A−1
A · t̂B A · t̂ L B −1

B · t̂AB · t̂ L A−1
A · · · t̂B A · t̂ L B −1

B · t̂AB · t̂ L A
A . (41)

The boundary conditions are defined by the pinning equations involving surface pinning
parameters ap and a′

p, related to the well known surface parameters Asur f [37–40] (see the
appendix for details):

m+
−1 = apm+

0, (42)

m+
L = a′

pm+
L−1, (43)

where (in the case considered here) the total number L is L = 4L A + 3L B . Thus, the
characteristic equation reads

(1,−ap) · T̂ ·
(

1
a′

p

)
= 0. (44)

Then, the spin wave mode profiles can be calculated according to the partial transfer matrix,
which is deduced from equation (41).

5. The effect of dipolar interactions on the spin wave spectrum

The effect of long-range dipolar interactions on magnetic multilayer spin wave modes is to be
examined first. However, in our study, this effect is assumed not to be related to the existence of
surface magnetostatic excitations [41–48]. We simply compare the magnon spectra calculated
according to (44), where both dipolar (static and dynamic) and exchange fields are considered,
with those obtained from equations in which the dynamic dipolar field is neglected and one
only takes into account exchange and demagnetization fields. Special attention is paid to the
shape of spin wave mode profiles. Conditions for the effect of dipolar field to be negligible
will be deduced from this comparison.

In the considered symmetrical multilayer [Fe/Ni]3Fe, with the ‘lattice’ constant (LFe +
LNi)a = 100 Å and surface spins strongly pinned, the dynamic dipolar interactions are found to
cause only minor shifts of exchange spin wave energy branches towards lower frequency values
(see figure 3). For non-zero values of magnetization contrast (figure 3), this shift depends on
the filling fraction f , defined as the thickness ratio of layer Fe to bilayer Fe/Ni (regarded as
the unit cell):

f = LFe

LFe + LNi
. (45)
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Figure 2. The model of a multilayer composed of NA = 4 sublayers of material A and NB = 3
sublayers of material B. Each sublayer A or B contains L A or L B planes respectively. L is the
total number of planes in the multilayer. Fictitious planes l = −1 and l = L + 1 lie beyond the
multilayer.

(This figure is in colour only in the electronic version)

For a composite with component materials differing in their exchange constant values only,
the shift is insensitive to the filling fraction.

We also notice an effect of the dipolar field on the lowest magnon mode profiles. Figure 4
shows profiles of the first three exchange-dipolar modes (full curve) and the corresponding
exchange-demagnetization modes (broken curve), in a system composed of four Fe layers
and three Ni layers. As the effect of dipolar field is found to become negligible for higher
frequencies (higher modes), we will confine our interest to the lowest mode.

Figure 5 shows profiles of the first spin mode for three values of the filling fraction: f = 0.1
(nickel predominating in the multilayer), f = 0.5 (all sublayers being of the same thickness)
and f = 0.9 (Fe predominating). The interface pinning seems to be due to the relatively
high magnetization value in iron layers with respect to that in Ni layers (MSFe/MSNi ≈ 3.0).
Furthermore, we notice that profile deformations are more significant in the inner iron layers
than in those close to the surface. In our opinion, this is due to the larger distance between the
inner layers and the multilayer external surfaces, where the spins are assumed to be completely
pinned.

Furthermore, the effect of dynamic dipole interactions is found to increase with surface
spin freedom, especially in layers close to the multilayer surfaces. Figure 6 shows the profile
of the lowest spin wave mode in multilayer [Fe/Ni]3Fe with unpinned surface spins; it is worth
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Figure 3. Spin wave mode energy spectrum versus filling fraction f = LFe(LFe+LNi)
−1, computed

for two cases: with dynamic dipolar field included (full curves) or neglected (broken curves). The
considered multilayer Fe/Ni/Fe/Ni/Fe/Ni/Fe represents the case with strong magnetization contrast
and strong surface spin pinning, MSFe = 1.752 × 106 A m−1, AFe = 2.1 × 10−11 J m−1 and
MSNi = 0.61 × 106 A m−1, ANi = 0.7 × 10−11 J m−1.

noticing that for Asur f � 1.0 the lowest symmetrical mode corresponds to a surface excitation
with maximum amplitude on the multilayer external surfaces. The dipole interactions intensify
the spin wave amplitude on the surface, which involves an increase of surface energy and
therefore of surface spin freedom too. As a result, the calculated spin wave surface amplitude
is higher if dipole interactions are taken into account (full curve), and lower if those interactions
are neglected (broken curve). One notes that this discrepancy grows with the surface parameter
value.

The effects discussed above have their impact on the SWR spectrum. The SWR intensity
is given by the following formula [37]:

P(n) =
∑

l

|m+
l (n)|2, (46)

where m+
l (n) is the normalized nth spin-wave mode amplitude in the lth plane. Figure 7 shows

that including the dynamic dipole field in the consideration has a double SWR effect: (a) the
whole spectrum is shifted towards lower frequencies, and (b) the relative intensities of the first
resonance lines are essentially modified. Hence, including the dipole interactions seems to
be necessary especially in calculations for magnetic multilayers with positive value of surface
anisotropy, i.e. the value evoking surface spin wave modes.

Further on we will focus on low energy states, in which the effect of dipolar field is
appreciable. Thus, the interactions to be considered in the following calculations include
exchange and demagnetization as well as dynamic dipolar fields. For the excitations studied
below we always assume µ0 H0 = 0.1 T.
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Figure 4. The normalized mode amplitude profiles of exchange-dipolar spin wave modes n = 1, 2
and 3 in a [Fe/Ni]3Fe multilayer (full curves). For comparison, profiles of pure exchange-
demagnetization modes are also shown (broken curves). Surface spins are assumed to be strongly
pinned, and the filling fraction value is taken as f = 0.5.

6. Spin wave mode profiles

Excitations in a multilayer generally behave like those in a homogeneous film. An example is
shown in figure 4: in a symmetrical multilayer with surface spins pinned, the modes represent
alternately symmetrical and antisymmetrical standing waves with nodes on the surfaces, exactly
as in a homogeneous film. The difference is that inside the sample the multilayer profiles do
not vary homogeneously, due to perturbations caused by interfaces. Now we are going to study
the effect of interfaces (as well as that of surface conditions) on the shape of mode profiles in
a multilayer.

Figure 5 shows variations of the first mode profile for different filling fraction values. For
all three filling fraction values ( f = 0.1, 0.5 and 0.9), the profiles preserve their general form
of the first harmonic. It should be noticed that all the sublayers show asymmetry in their partial
profiles, their amplitudes being the lowest on the side of the closest outer surface. This effect
is stronger in iron layers, due to their high magnetization value, but also occurs (although it is
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Figure 5. The first mode amplitude profile across the multilayer [Fe/Ni]3Fe for different values
of the filling fraction: f = 0.1, 0.5 and 0.9. Profiles obtained for dipolar, demagnetization
and exchange fields included (full curves) are juxtaposed with those obtained considering
demagnetization and exchange fields only (broken curves). In both cases surface spins are strongly
pinned.

much weaker) in Ni layers (cf cases f = 0.1 and 0.9 in figure 5); the asymmetry disappears
in the central zone. The same is observed in all the higher modes, though the effect decreases
as frequency increases.

Figure 8 shows profiles of modes n = 1, 4 and 7 (8) in the investigated composite, for
two filling fraction values: (a) f = 0.1, in which case nickel is the predominating material,
and (b) f = 0.9, with iron predominating. The lowest (n = 1) mode profile (the same as in
figure 5) is composed of more or less linear segments, each corresponding to a single sublayer.
For n = 4 the mode profile segments in the predominant material become sinusoidal arches,
the interface amplitude being maximum in Ni (if f = 0.1) and minimum (close to zero) in
Fe sublayers (if f = 0.9). The lowest mode of the third band, n = 7, shows similar features.
This indicates a strong pinning of the interface spins in Fe layers (i.e. those in contact with
nickel), while the Ni interface spins (in contact with iron) show no pinning at all.

7. SWR spectra in iron/nickel bilayers and nickel/iron/nickel trilayers

The above-presented method of calculating spin wave profiles and resonance spectra
can be used in interpretation of SWR spectra observed experimentally in ferromagnetic
multilayer systems. Through fitting the calculated resonance line intensities and positions
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Figure 6. The lowest mode profiles for two surface parameter values, Asur f = 1.0 and 1.0072,
in multilayer [Fe/Ni]3Fe, computed considering dipolar and exchange interactions (full curves),
juxtaposed with those obtained considering the exchange field only (broken curves).

Figure 7. SWR spectrum in the multilayer [Fe/Ni]3Fe computed considering dipolar and exchange
interactions (bottom spectrum), juxtaposed with that obtained considering exchange field only
(upper spectrum)—for the case of unpinned surface spins (Asur f = 1.0072).



2462 M Krawczyk et al

Figure 8. Spin wave mode profiles in [Fe/Ni]3Fe multilayer. (a) Profiles of modes n = 1, 4 and
7 obtained for filling fraction value f = 0.1 (Ni and Fe sublayer thickness being 90 and 10 Å,
respectively). (b) Profiles of modes n = 1, 4 and 8 obtained for filling fraction value f = 0.9. In
both cases surface spins are strongly pinned.

to corresponding experimental results one is able to find surface material parameter values
of interest. Below we develop a qualitative analysis of the resonance spectra obtained by
Chambers et al [31] in bilayer and trilayer systems composed of iron and nickel, estimating the
involved surface anisotropy energy. As these experimentally studied systems are asymmetric,
in their theoretical treatment it is necessary to introduce two surface parameters, As and A f ,
corresponding to the substrate interface and the multilayer free surface, respectively.

Figure 9 shows the SWR spectrum calculated for a bilayer Fe/Ni (the respective sublayer
thickness values being 100 Å/1500 Å) with the following surface parameter values: substrate
interface (LiF/Fe) parameter As = 1.011 48, and free surface (Ni/air) parameter A f =
1.005 28. This spectrum corresponds to that observed experimentally for LiF/Fe/Ni/air and
reported in [31]. In our interpretation of this spectrum, mode n = 1 lies beyond the considered
frequency range and its intensity is close to zero (due to its strong surface localization); the
most intensive excitation corresponds to mode n = 2, which is of bulk character within the
iron sublayer and becomes localized (near the external surface) in the nickel sublayer.

We propose an analogical interpretation of the SWR spectrum in LiF/Ni/Fe/air (see
figure 10). Our theoretical spectrum, obtained through fitting the surface parameter values,
corresponds to that observed experimentally [31]. The results of this fitting indicate rather a
high degree of surface spin freedom: the surface parameter value in Ni (on its interface with
the LiF substrate) is As = 1.024 64, while the free surface parameter value in Fe is found to
be A f = 1.045 92. As in the preceding case, mode n = 1 is invisible here. Mode n = 2, the
first to be noticeable in the resonance spectrum, is localized in Ni at the substrate interface,
whereas mode n = 3 is also localized in the same layer, but at the other interface, Ni/Fe.

As nickel is the predominating material in the studied bilayers (nickel to iron layer
thickness ratio is 15 to 1), it is from the Ni layer excitations that the principal contribution
to the resonance line intensity originates. Therefore, a single Ni layer with effective surface
parameters on interfaces (LiF/Fe)/Ni and Ni/(Fe/air) can be considered instead of the actual
bilayer (this approach was used for example in [49] to study ferromagnetic resonance in
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Figure 9. SWR spectrum and profiles of the first three noticeable modes computed for the
system LiF/Fe/Ni/air, depicted above. The respective surface parameter values, As = 1.011 48,
A f = 1.005 28, are found through fitting this spectrum to that obtained experimentally by Chambers
et al [31].

a system consisting of a thick iron layer covered with a thin nickel film). The following
effective pinning parameter values were found for the bilayers considered in this study: for
the interface Ni/(Fe/air) the increase of surface parameter value A f from 1.005 28 to 1.014 08
seems to indicate that the iron interlayer inserted between nickel and air increases nickel surface
anisotropy, nearly doubling its value, while inserting the same interlayer between nickel and
lithium fluoride (the interface (Li/Fe)/Ni) substantially reduces surface anisotropy since the
surface parameter As decreases from 1.024 64 to 1.002 82.

The above-mentioned values of surface parameters in Ni were used in calculating the
resonance spectra in LiF/Ni/Fe/Ni/air trilayers with the respective magnetic sublayer thickness
values 250 Å/100 Å/1250 Å (see figure 11) and 1250 Å/100 Å/250 Å (see figure 12). Our
spectra fit with those obtained experimentally [31], involving only slight modifications of
the surface parameter values found from the bilayer spectrum. This confirms the correctness
of our calculation procedure; moreover, through the profiles found, each resonance line can
be univocally interpreted in the trilayer spectrum: all the first three lines are surface modes
confined in nickel sublayers, localized, respectively, on the Ni/Fe interface, substrate interface
and free surface.
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Figure 10. SWR spectrum and profiles of the first three noticeable modes computed for the
system LiF/Ni/Fe/air, depicted above. The respective surface parameter values, As = 1.024 64,
A f = 1.045 92, are found through fitting this spectrum to that obtained experimentally by Chambers
et al [31].

8. Conclusions

The calculation procedure developed in this study is based on the transfer matrix approach and
allows us to compute SWR spectra in ferromagnetic multilayers, taking dipole interactions into
account. The dynamic component of the dipole field, expressed as a function of magnetization,
is related to its transversal component through the magnetic susceptibility tensor. As shown
above, this tensor has a particularly simple form for the magnetization vector being either
perpendicular or parallel to the multilayer surface. Only the perpendicular configuration
was considered in detail, and resonance computations were performed for multilayer systems
consisting of Fe and Ni sublayers.

The dipole interactions are found to produce a homogeneous shift of the spin wave
excitation energy branches, the effect strongly depending on the filling fraction and the
magnetization contrast between constituent materials. Moreover, the spin wave profile
deformation due to the dipole field is found to be the most significant in the low frequency
range, and to depend on surface conditions: the higher the degree of surface spin freedom, the
more significantly modified are the low energy mode profiles. Obviously, these dipole-related
deformations of spin wave amplitude distribution involve modifications of resonance line
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Figure 11. The theoretically found SWR spectrum and profiles of the first three modes in the
trilayer LiF/Ni/Fe/Ni/air (depicted above); the respective magnetic sublayer thickness values are
250 Å/100 Å/1250 Å. This theoretical spectrum was fitted to that obtained experimentally by
Chambers et al [31], resulting in surface parameter values As = 1.033 44 and A f = 1.003 52.

intensity as well. For all these reasons, we decided to include the effect of dipole interactions
in our calculations of SWR spectra, which were subsequently compared to the corresponding
experimental results [31].

A two-step procedure was followed in order to compare our theoretical SWR spectra with
those obtained experimentally: first, surface parameter estimate values were deduced from
resonance spectra in LiF/Fe/Ni/air and LiF/Ni/Fe/air bilayers; next, the values obtained were
used to calculate trilayer SWR spectra. These spectra showed a very good qualitative fit with
those obtained experimentally, which indicates that our estimates of surface anisotropy energy
values are reliable. The estimated values of surface anisotropy constant KS , found using our
theory for different Fe and Ni interfaces, are detailed in table 1. These values correspond with
the results reported by other authors (see [50, 51]).

An interesting feature of interface spin pinning was revealed in this study. This pinning
is due to the magnetization and exchange contrasts on the interface, and possible to deduce, at
least qualitatively, from the shape of spin wave profiles. The profiles obtained within this study
indicate that Fe spins in contact with Ni become strongly pinned, while Ni spins in contact
with Fe seem to recover freedom.

In our next study we are going to extend the research presented above to any configuration
of the magnetic field with respect to the multilayer surface.
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Figure 12. The theoretically found SWR spectrum and profiles of the first three modes in the
trilayer LiF/Ni/Fe/Ni/air (depicted above); the respective magnetic sublayer thickness values are
1250 Å/100 Å/250 Å. This theoretical spectrum was fitted to that obtained experimentally by
Chambers et al [31], resulting in surface parameter values As = 1.034 32 and A f = 1.005 82.

Table 1. Surface anisotropy KS(erg cm−2) values for different iron and nickel interfaces deduced
from theoretical interpretation of SWR spectra reported in [31].

Interface KS(10−3 J m−2)

Ni/air <0.1
LiF/Ni 0.7–0.95
Fe/air >3.0
LiF/Fe 0.85
Ni/(Fe/air) 0.35
Effective value
(LiF/Fe)/Ni <0.10
Effective value
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Figure A.1. Schematically depicted interpolation supplying the base for deriving the relation
between the actual surface parameter Asur f and parameter ap used in our numerical calculations.

Appendix. Derivation of the surface parameter formula

There is a simple relation between surface parameter Asur f and surface anisotropy constant
KS[37]:

Asur f = 1 +
KSd0

A
, (A.1)

d0 being the distance between neighbouring atomic planes in the direction perpendicular to
the surface, and A being the exchange constant. In this definition, the surface parameter is the
ratio of the dynamic magnetization value on a multilayer external surface to that of a fictitious
atomic plane (see figure A.1):

mL+ d0
a0

= Asur f mL . (A.2)

However, in the numerical computations performed in this study, another surface parameter is
used, ap, defined as the ratio of magnetization values of a multilayer surface and an arbitrary
fictitious plane (L + 1):

mL+1 = apmL , (A.3)

the distance a0 between this fictitious plane and the surface being arbitrary (the choice of its
final value assures the best numerical convergence).



2468 M Krawczyk et al

The relation between these two surface parameters, Asur f and ap, can be deduced from
the equality, referring to figure A.1,

mL+ d0
a0

− mL

d0
= mL+1 − mL

a0
; (A.4)

or, after including (A.2) and (A.3),

mL Asur f − mL

d0
= mLap − mL

a0
. (A.5)

After some rearrangements, the final formula is obtained from (A.5):

Asur f = (ap − 1)
d0

a0
+ 1. (A.6)

In this study, the surface parameter Asur f values were calculated assuming d0 in iron and nickel
to be 1.435 and 1.76 Å, respectively (for plane (001)), according to [52].
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